Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3'-(2,4-dichlorophenyl)-5'-hydroxy-5'-methyl-4'.5'-dihydrospiro[fluorene-9,2'(3'H)-furan]-4'-carboxylate

M. NizamMohideen,^a S. Thenmozhi,^b A. SubbiahPandi,^b* G. Savitha^c and P. T. Perumal^c

^aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020. India

Correspondence e-mail: a_spandian@yahoo.com

Received 12 March 2009; accepted 30 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.151; data-to-parameter ratio = 18.3.

The furan ring and the five-membered fluorene unit in the title compound, C₂₆H₂₂Cl₂O₄, adopt envelope conformations. Intermolecular C-H···O interactions between symmetryrelated molecules involving two C-H groups and an O atom as a bifurcated acceptor generate centrosymmetric hydrogenbonded dimers with cyclic $R_2^2(16)$ and $R_2^2(8)$ ring motifs. A short C-H···Cl intramolecular contact occurs in the molecule.

Related literature

For spiro compounds in pharmacologically active alkaloids, see: Cravotto et al. (2001). For the anticonvulsant activity of fluorene derivatives, see: Vanvakides et al. (2004). Fluorene derivatives, including polyfluorenes and oligofluorenes, are promising candidates for blue light-emitting materials in organic light-emitting devices (Muller et al., 2003), organic phototransistors (Saragi et al., 2004), non-linear optics (Kim et al., 1998) and photochromic materials (Chun et al., 2003). For the biological activity of furan derivatives and annulated furan derivatives and their use as precursors for the synthesis of natural products, see: Greve & Friedrichsen (2000). For hydrogen-bond motifs and ring puckering parameters, see: Bernstein et al. (1995); Cremer & Pople (1975); Nardelli (1983). For a related spiro-linked system, see: Feng et al. (2004).

V = 4520.4 (4) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

22504 measured reflections

5338 independent reflections

3663 reflections with $I > 2\sigma(I)$

 $\mu = 0.32 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.056$

Z = 8

Experimental

Crystal data

C26H22Cl2O4 $M_r = 469.34$ Monoclinic, C2/c a = 28.6811 (13) Åb = 9.0600 (4) Å c = 17.4074 (8) Å $\beta = 92.072 (3)^{\circ}$

Data collection

```
Bruker Kappa APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker 2004)
  T_{\min} = 0.916, T_{\max} = 0.938
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 291 parameters $wR(F^2) = 0.151$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$ S = 1.04 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$ 5338 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O3^{i}$	0.98	2.37	3.331 (3)	167
$C6-H6\cdots O3^{i}$	0.93	2.55	3.393 (3)	151
$C3-H3\cdots Cl1$	0.98	2.57	3.082 (2)	113

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2242).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem. 13, 2904–2909.
- Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feng, L., Li, Z.-M., Tan, Y.-S., Chen, M.-Q., Weng, L.-H. & Tao, F.-G. (2004). Acta Cryst. C60, 0473–0474.
- Greve, S. & Friedrichsen, W. (2000). Prog. Heterocycl. Chem. 12, 134-160.
- Kim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys. 109, 2593-2595.
- Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). *Nature* (London), 421, 829–833.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334–2336.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vanvakides, A., Antoniou, K. & Daifoti, Z. (2004). Ann. Pharm. Fr. 62, 49-55.

Acta Cryst. (2009). E65, o977-o978 [doi:10.1107/S1600536809011854]

Ethyl 3'-(2,4-dichlorophenyl)-5'-hydroxy-5'-methyl-4',5'-dihydrospiro[fluorene-9,2'(3'*H*)-furan]-4'-carboxylate

M. NizamMohideen, S. Thenmozhi, A. SubbiahPandi, G. Savitha and P. T. Perumal

Comment

Spiro compounds are often encountered in many pharmacologically active alkaloids (Cravotto *et al.*, 2001) and fluorene derivatives have been found to have anticonvulsant activity (Vanvakides *et al.*, 2004). In addition, fluorene derivatives, including polyfluorenes and oligofluorenes, have been studied extensively in recent years because they are very promising candidates for blue light-emitting materials in organic light-emitting devices (Muller *et al.*, 2003), organic phototransistors (Saragi *et al.*, 2004), nonlinear optics (Kim *et al.*, 1998) and photochromic materials (Chun *et al.*, 2003). Furan derivatives and annulated furan derivatives occur widely in nature and, along with their unnatural analogs, have been shown to have a wide range of biological activity as well as being important precursors for the synthesis of natural products (Greve & Friedrichsen, 2000). In view of these important properties, the crystal structure of the title compound, (I), has been determined.

in (I, Fig. 1) the C4-C5 and C4-C16 bond distances of the fluorene moiety are almost identical to the values reported in another spiro-linked system (Feng *et al.*, 2004).

The benzene ring is planar with the largest displacement observed being -0.014 (1) Å for atom C22. The deviations of the atoms Cl1 and Cl2 from the least-squares plane of the phenyl rings are -0.114 (1) and 0.015 (1) Å, respectively.

The five membered fluorene moiety adopts an envelope conformation (flap atom C4) with a pseudo-twofold axis passing through the C4-C5 bond. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) for this ring are $q_2 = 0.107$ (2) Å, $\varphi = 355.0$ (1)° and $\Delta_S(C4)$ is 1.3 (1)°. The tetrahydrofuran ring also adopts an envelope conformation (flap atom C2) with a pseudo-twofold axis passing through the C2-C3 bond. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) for this ring are $q_2 = 0.388$ (2) Å, $\varphi = 252.1$ (2)° and $\Delta_S(C2)$ is 2.1 (2)°.

Carbonyl atom O3 acts as a intermolecuar bifurcated acceptor with both C2 and C6 (Table 1 and Fig. 2) from a symmetry-related molecule to form centrosymmetric hydrogen bonded dimers with cyclic $R_2^2(16)$ and $R_2^2(8)$ (Bernstein, *et al.*, 1995) ring systems, respectively. The structure is further stabilized by C—H··· π interactions involing rings C26-H26C···*Cg*1 (*Cg*1 is the centroid of the C11—C16 ring).

Experimental

To a stirred mixture of 9-(2,4-Dichloro-benzylidene)-9*H*-fluorene (1.0 mmol), ethylacetoacetate (1.0 mmol) and NaHCO₃ (3.0 mmol) in acetonitrile (10 ml), ceric ammonium nitrate (2.5 mmol) dissolved in acetonitrile (5 ml) was added dropwise at 0 ° under N₂. The reaction mixture was stirred until completion of the reaction as monitored by TLC. Water was added to the mixture and the product was extracted with ethyl acetate (2 × 20 ml) and then dried over anhydrous Na₂SO₄. Removal of the solvent under reduced pressure gave a crude product, which was purified by column chromatography on silica gel,

with ethyl acetate-hexane (4:6) as eluent to afford a pure product in 79% yield. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethylacetate.

Refinement

All H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme for. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of compound (I), showing the $R_2^2(16)$ and $R_2^2(8)$ rings. Hydrogen bonding is shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: -x + 1/2, -y + 1/2, -z]

Ethyl 3'-(2,4-dichlorophenyl)-5'-hydroxy-5'-methyl-4',5'- dihydrospiro[fluorene-9,2'(3'H)-furan]-4'-carboxylate

Crystal data

$C_{26}H_{22}Cl_2O_4$	$F_{000} = 1952$
$M_r = 469.34$	$D_{\rm x} = 1.379 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 7176 reflections
a = 28.6811 (13) Å	$\theta = 2.5 - 25^{\circ}$
b = 9.0600 (4) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 17.4074 (8) Å	<i>T</i> = 293 K
$\beta = 92.072 \ (3)^{\circ}$	Prismatic, yellow
$V = 4520.4 (4) \text{ Å}^3$	$0.25\times0.20\times0.20\ mm$
Z = 8	

Data collection

Bruker Kappa APEXII CCD diffractometer	5338 independent reflections
Radiation source: fine-focus sealed tube	3663 reflections with $I > 2\sigma(I)$

Monochromator: graphite	$R_{\rm int} = 0.056$
T = 293 K	$\theta_{max} = 27.8^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker 2004)	$h = -36 \rightarrow 37$
$T_{\min} = 0.916, T_{\max} = 0.938$	$k = -11 \rightarrow 11$
22504 measured reflections	$l = -21 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0729P)^2 + 2.471P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
5338 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
291 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.06337 (2)	-0.03027 (7)	0.10063 (4)	0.0663 (2)
Cl2	0.00329 (2)	0.39144 (8)	-0.09056 (4)	0.0652 (2)
01	0.21156 (5)	0.19309 (19)	0.21266 (8)	0.0476 (4)
O2	0.23543 (6)	-0.03879 (18)	0.17193 (10)	0.0550 (4)
H2	0.2506	-0.0562	0.2117	0.082*
03	0.25673 (6)	0.04006 (18)	-0.01270 (10)	0.0540 (4)
O4	0.18812 (5)	-0.06733 (17)	0.00380 (9)	0.0455 (4)
C1	0.23639 (7)	0.1143 (2)	0.15672 (13)	0.0411 (5)
C2	0.20777 (6)	0.1382 (2)	0.08249 (11)	0.0331 (4)
H2A	0.2135	0.2389	0.0645	0.040*
C3	0.15806 (6)	0.1308 (2)	0.10976 (11)	0.0301 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3	0.1508	0.0267	0.1186	0.036*
C4	0.16289 (7)	0.2080 (2)	0.19036 (12)	0.0349 (4)
C5	0.14777 (8)	0.3679 (2)	0.19083 (12)	0.0401 (5)
C6	0.16812 (10)	0.4898 (2)	0.15801 (13)	0.0536 (6)
H6	0.1963	0.4821	0.1336	0.064*
C7	0.14497 (14)	0.6249 (3)	0.16271 (16)	0.0709 (9)
H7	0.1579	0.7085	0.1409	0.085*
C8	0.10342 (13)	0.6362 (3)	0.19909 (17)	0.0722 (9)
H8	0.0883	0.7269	0.2005	0.087*
C9	0.08401 (11)	0.5172 (3)	0.23298 (16)	0.0628 (7)
H9	0.0561	0.5263	0.2581	0.075*
C10	0.10643 (8)	0.3822 (2)	0.22951 (12)	0.0438 (5)
C11	0.09519 (8)	0.2392 (3)	0.26364 (13)	0.0442 (5)
C12	0.05912 (10)	0.1956 (4)	0.30938 (16)	0.0650 (7)
H12	0.0350	0.2601	0.3201	0.078*
C13	0.05993 (12)	0.0536 (4)	0.33873 (18)	0.0767 (9)
H13	0.0359	0.0223	0.3693	0.092*
C14	0.09547 (12)	-0.0415 (3)	0.32353 (16)	0.0690 (8)
H14	0.0959	-0.1349	0.3457	0.083*
C15	0.13054 (9)	-0.0010 (3)	0.27593 (14)	0.0505 (6)
H15	0.1540	-0.0672	0.2639	0.061*
C16	0.13012 (7)	0.1400 (2)	0.24653 (11)	0.0378 (5)
C17	0.12017 (6)	0.1925 (2)	0.05700 (11)	0.0300 (4)
C18	0.12700 (7)	0.3165 (2)	0.01180 (12)	0.0369 (5)
H18	0.1564	0.3597	0.0125	0.044*
C19	0.09199 (8)	0.3780 (2)	-0.03393 (13)	0.0431 (5)
H19	0.0978	0.4604	-0.0640	0.052*
C20	0.04839 (7)	0.3160 (2)	-0.03454 (12)	0.0405 (5)
C21	0.03967 (7)	0.1925 (2)	0.00810 (12)	0.0413 (5)
H21	0.0101	0.1506	0.0074	0.050*
C22	0.07576 (7)	0.1313 (2)	0.05219 (12)	0.0355 (4)
C23	0.28555 (8)	0.1735 (3)	0.15764 (15)	0.0597 (7)
H23A	0.3002	0.1568	0.2073	0.089*
H23B	0.2848	0.2774	0.1471	0.089*
H23C	0.3029	0.1239	0.1192	0.089*
C24	0.22049 (7)	0.0327 (2)	0.01982 (12)	0.0356 (4)
C25	0.19678 (9)	-0.1675 (3)	-0.05956 (14)	0.0541 (6)
H25A	0.2275	-0.2115	-0.0531	0.065*
H25B	0.1952	-0.1145	-0.1080	0.065*
C26	0.16055 (11)	-0.2826 (3)	-0.05889 (18)	0.0685 (8)
H26A	0.1637	-0.3381	-0.0120	0.103*
H26B	0.1641	-0.3474	-0.1019	0.103*
H26C	0.1303	-0.2373	-0.0623	0.103*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0460 (4)	0.0596 (4)	0.0915 (5)	-0.0247 (3)	-0.0215 (3)	0.0354 (3)

Cl2	0.0504 (4)	0.0691 (4)	0.0743 (5)	0.0082 (3)	-0.0234 (3)	0.0176 (3)
01	0.0330 (8)	0.0669 (10)	0.0423 (9)	-0.0021 (7)	-0.0079 (7)	-0.0085 (7)
O2	0.0522 (10)	0.0538 (10)	0.0579 (10)	0.0060 (8)	-0.0121 (8)	0.0140 (8)
03	0.0441 (10)	0.0515 (10)	0.0677 (11)	-0.0063 (7)	0.0194 (8)	-0.0078 (8)
04	0.0390 (8)	0.0434 (8)	0.0540 (9)	-0.0071 (7)	-0.0003 (7)	-0.0137 (7)
C1	0.0308 (11)	0.0483 (12)	0.0439 (12)	-0.0006 (9)	-0.0042 (9)	0.0008 (9)
C2	0.0267 (10)	0.0317 (10)	0.0406 (11)	-0.0033 (7)	-0.0025 (8)	0.0009 (8)
C3	0.0268 (10)	0.0263 (9)	0.0368 (10)	-0.0033 (7)	-0.0030 (8)	0.0011 (7)
C4	0.0318 (10)	0.0345 (10)	0.0381 (11)	-0.0020 (8)	-0.0041 (8)	0.0015 (8)
C5	0.0517 (13)	0.0346 (11)	0.0333 (10)	-0.0043 (9)	-0.0074 (9)	-0.0035 (8)
C6	0.0795 (18)	0.0389 (12)	0.0423 (13)	-0.0168 (12)	-0.0022 (12)	-0.0051 (10)
C7	0.130 (3)	0.0322 (13)	0.0493 (15)	-0.0157 (15)	-0.0189 (17)	0.0005 (11)
C8	0.110 (3)	0.0433 (15)	0.0613 (17)	0.0191 (15)	-0.0230 (18)	-0.0063 (13)
C9	0.0715 (18)	0.0554 (16)	0.0603 (16)	0.0205 (13)	-0.0138 (14)	-0.0078 (13)
C10	0.0489 (13)	0.0430 (12)	0.0387 (11)	0.0062 (10)	-0.0081 (10)	-0.0037 (9)
C11	0.0400 (12)	0.0532 (13)	0.0392 (12)	-0.0001 (10)	-0.0028 (10)	-0.0026 (10)
C12	0.0506 (15)	0.085 (2)	0.0606 (17)	0.0010 (14)	0.0145 (13)	-0.0025 (15)
C13	0.071 (2)	0.092 (2)	0.069 (2)	-0.0250 (18)	0.0225 (16)	0.0101 (17)
C14	0.089 (2)	0.0612 (17)	0.0574 (17)	-0.0222 (16)	0.0069 (16)	0.0162 (13)
C15	0.0611 (16)	0.0435 (13)	0.0467 (13)	-0.0029 (11)	-0.0020 (12)	0.0064 (10)
C16	0.0388 (11)	0.0412 (11)	0.0330 (10)	-0.0042 (9)	-0.0033 (9)	0.0019 (8)
C17	0.0281 (9)	0.0277 (9)	0.0340 (10)	-0.0013 (7)	-0.0029 (8)	-0.0039(7)
C18	0.0336 (11)	0.0337 (10)	0.0430 (11)	-0.0071 (8)	-0.0048 (9)	0.0018 (9)
C19	0.0471 (13)	0.0347 (11)	0.0469 (12)	-0.0054 (9)	-0.0079 (10)	0.0077 (9)
C20	0.0370 (11)	0.0400 (11)	0.0434 (12)	0.0052 (9)	-0.0107 (9)	-0.0004 (9)
C21	0.0309 (11)	0.0431 (11)	0.0493 (13)	-0.0056 (9)	-0.0070 (9)	-0.0004 (10)
C22	0.0317 (10)	0.0322 (10)	0.0424 (11)	-0.0061 (8)	-0.0030 (9)	0.0027 (8)
C23	0.0327 (12)	0.0820 (18)	0.0634 (16)	-0.0086 (12)	-0.0113 (11)	-0.0038 (14)
C24	0.0340 (11)	0.0305 (10)	0.0419 (11)	0.0004 (8)	-0.0020 (9)	0.0041 (8)
C25	0.0615 (16)	0.0469 (13)	0.0534 (14)	0.0042 (12)	-0.0065 (12)	-0.0132 (11)
C26	0.078 (2)	0.0479 (15)	0.0779 (19)	-0.0077 (13)	-0.0150 (16)	-0.0140 (13)

Geometric parameters (Å, °)

1.733 (2)	C11—C16	1.386 (3)
1.732 (2)	C11—C12	1.386 (3)
1.420 (3)	C12—C13	1.384 (4)
1.442 (2)	C12—H12	0.9300
1.412 (3)	C13—C14	1.368 (4)
0.8200	С13—Н13	0.9300
1.203 (3)	C14—C15	1.376 (4)
1.320 (2)	C14—H14	0.9300
1.456 (3)	C15—C16	1.376 (3)
1.508 (3)	C15—H15	0.9300
1.521 (3)	C17—C22	1.389 (3)
1.506 (3)	C17—C18	1.389 (3)
1.520 (3)	C18—C19	1.377 (3)
0.9800	C18—H18	0.9300
1.505 (3)	C19—C20	1.371 (3)
	1.733 (2) 1.732 (2) 1.420 (3) 1.442 (2) 1.412 (3) 0.8200 1.203 (3) 1.320 (2) 1.456 (3) 1.508 (3) 1.521 (3) 1.506 (3) 1.520 (3) 0.9800 1.505 (3)	1.733 (2) $C11-C16$ $1.732 (2)$ $C11-C12$ $1.420 (3)$ $C12-C13$ $1.442 (2)$ $C12-H12$ $1.412 (3)$ $C13-C14$ 0.8200 $C13-H13$ $1.203 (3)$ $C14-C15$ $1.320 (2)$ $C14-H14$ $1.456 (3)$ $C15-C16$ $1.508 (3)$ $C17-C22$ $1.506 (3)$ $C17-C18$ $1.520 (3)$ $C18-C19$ 0.9800 $C18-H18$ $1.505 (3)$ $C19-C20$

C3—C4	1.569 (3)	С19—Н19	0.9300
С3—Н3	0.9800	C20—C21	1.371 (3)
C4—C16	1.512 (3)	C21—C22	1.382 (3)
C4—C5	1.512 (3)	C21—H21	0.9300
C5—C6	1.383 (3)	C22—Cl1	1.733 (2)
C5—C10	1.391 (3)	С23—Н23А	0.9600
C6—C7	1.396 (4)	С23—Н23В	0.9600
С6—Н6	0.9300	С23—Н23С	0.9600
С7—С8	1.373 (4)	C25—C26	1.472 (4)
С7—Н7	0.9300	C25—H25A	0.9700
C8—C9	1.358 (4)	C25—H25B	0.9700
C8—H8	0.9300	C26—H26A	0.9600
C9—C10	1.384 (3)	С26—Н26В	0.9600
С9—Н9	0.9300	С26—Н26С	0.9600
C10—C11	1.466 (3)		
C1—O1—C4	111.55 (15)	C14—C13—H13	119.4
С1—О2—Н2	109.5	C12—C13—H13	119.4
C24—O4—C25	116.72 (17)	C13—C14—C15	121.0 (3)
O2—C1—O1	110.58 (18)	C13—C14—H14	119.5
O2—C1—C23	111.83 (19)	C15—C14—H14	119.5
O1—C1—C23	107.81 (18)	C14—C15—C16	118.4 (3)
O2—C1—C2	106.62 (17)	C14—C15—H15	120.8
01—C1—C2	104.00 (16)	C16—C15—H15	120.8
C23—C1—C2	115.72 (19)	C15—C16—C11	121.2 (2)
C24—C2—C3	116.91 (16)	C15—C16—C4	128.4 (2)
C24—C2—C1	112.78 (17)	C11—C16—C4	110.23 (18)
C3—C2—C1	102.23 (16)	C22—C17—C18	115.87 (18)
C24—C2—H2A	108.2	C22—C17—C3	121.93 (17)
C3—C2—H2A	108.2	C18—C17—C3	122.18 (17)
C1—C2—H2A	108.2	C19—C18—C17	122.68 (19)
C17—C3—C2	117.24 (16)	C19—C18—H18	118.7
C17—C3—C4	114.73 (15)	C17—C18—H18	118.7
C2—C3—C4	101.89 (15)	C20-C19-C18	119.0 (2)
С17—С3—Н3	107.5	С20—С19—Н19	120.5
С2—С3—Н3	107.5	С18—С19—Н19	120.5
С4—С3—Н3	107.5	C19—C20—C21	120.98 (19)
O1—C4—C16	113.98 (16)	C19—C20—Cl2	120.33 (17)
O1—C4—C5	111.29 (16)	C21—C20—Cl2	118.68 (16)
C16—C4—C5	101.64 (17)	C20—C21—C22	118.69 (19)
O1—C4—C3	104.61 (15)	C20-C21-H21	120.7
C16—C4—C3	111.10 (16)	C22-C21-H21	120.7
C5—C4—C3	114.56 (16)	C21—C22—C17	122.71 (18)
C6—C5—C10	120.4 (2)	C21—C22—C11	116.49 (15)
C6—C5—C4	129.6 (2)	C17—C22—Cl1	120.78 (15)
C10—C5—C4	109.98 (18)	C21—C22—Cl1	116.49 (15)
C5—C6—C7	117.9 (3)	C17—C22—Cl1	120.78 (15)
С5—С6—Н6	121.1	C1—C23—H23A	109.5
С7—С6—Н6	121.1	C1—C23—H23B	109.5
C8—C7—C6	121.0 (3)	H23A—C23—H23B	109.5

С8—С7—Н7	119.5	C1—C23—H23C	109.5
С6—С7—Н7	119.5	H23A—C23—H23C	109.5
C9—C8—C7	121.2 (3)	H23B—C23—H23C	109.5
С9—С8—Н8	119.4	O3—C24—O4	123.5 (2)
С7—С8—Н8	119.4	O3—C24—C2	122.80 (19)
C8—C9—C10	119.0 (3)	O4—C24—C2	113.70 (17)
С8—С9—Н9	120.5	O4—C25—C26	107.2 (2)
С10—С9—Н9	120.5	O4—C25—H25A	110.3
C9—C10—C5	120.6 (2)	С26—С25—Н25А	110.3
C9—C10—C11	130.8 (2)	O4—C25—H25B	110.3
C5-C10-C11	108.50 (19)	С26—С25—Н25В	110.3
C16—C11—C12	119.9 (2)	H25A—C25—H25B	108.5
C16—C11—C10	108.35 (19)	С25—С26—Н26А	109.5
C12—C11—C10	131.6 (2)	С25—С26—Н26В	109.5
C13—C12—C11	118.3 (3)	H26A—C26—H26B	109.5
C13—C12—H12	120.8	С25—С26—Н26С	109.5
C11—C12—H12	120.8	H26A—C26—H26C	109.5
C14—C13—C12	121.1 (3)	H26B—C26—H26C	109.5
C4—O1—C1—O2	-89.2 (2)	C10-C11-C12-C13	-174.5 (3)
C4—O1—C1—C23	148.26 (19)	C11—C12—C13—C14	0.4 (5)
C4—O1—C1—C2	24.9 (2)	C12—C13—C14—C15	-2.7 (5)
O2—C1—C2—C24	-48.0 (2)	C13—C14—C15—C16	2.7 (4)
O1—C1—C2—C24	-164.86 (16)	C14—C15—C16—C11	-0.5 (3)
C23—C1—C2—C24	77.1 (2)	C14—C15—C16—C4	-176.5 (2)
O2—C1—C2—C3	78.44 (19)	C12—C11—C16—C15	-1.9 (3)
O1—C1—C2—C3	-38.47 (19)	C10-C11-C16-C15	175.3 (2)
C23—C1—C2—C3	-156.49 (19)	C12—C11—C16—C4	174.9 (2)
C24—C2—C3—C17	-73.5 (2)	C10-C11-C16-C4	-8.0 (2)
C1—C2—C3—C17	162.79 (16)	O1—C4—C16—C15	-52.6 (3)
C24—C2—C3—C4	160.35 (16)	C5—C4—C16—C15	-172.4 (2)
C1—C2—C3—C4	36.69 (18)	C3—C4—C16—C15	65.3 (3)
C1—O1—C4—C16	120.28 (19)	O1-C4-C16-C11	131.00 (19)
C1—O1—C4—C5	-125.50 (19)	C5-C4-C16-C11	11.2 (2)
C1—O1—C4—C3	-1.3 (2)	C3—C4—C16—C11	-111.1 (2)
C17—C3—C4—O1	-150.41 (16)	C2—C3—C17—C22	145.93 (19)
C2—C3—C4—O1	-22.69 (18)	C4—C3—C17—C22	-94.6 (2)
C17—C3—C4—C16	86.2 (2)	C2—C3—C17—C18	-35.9 (3)
C2—C3—C4—C16	-146.11 (16)	C4—C3—C17—C18	83.6 (2)
C17—C3—C4—C5	-28.3 (2)	C22—C17—C18—C19	1.4 (3)
C2—C3—C4—C5	99.43 (19)	C3—C17—C18—C19	-176.88 (19)
O1—C4—C5—C6	49.6 (3)	C17—C18—C19—C20	0.7 (3)
C16—C4—C5—C6	171.4 (2)	C18—C19—C20—C21	-1.5 (3)
C3—C4—C5—C6	-68.8 (3)	C18—C19—C20—Cl2	179.31 (17)
O1—C4—C5—C10	-132.24 (18)	C19—C20—C21—C22	0.2 (3)
C16—C4—C5—C10	-10.5 (2)	Cl2—C20—C21—C22	179.34 (16)
C3—C4—C5—C10	109.4 (2)	C20—C21—C22—C17	2.1 (3)
C10—C5—C6—C7	-2.3 (3)	C20—C21—C22—Cl1	-176.59 (17)
C4—C5—C6—C7	175.7 (2)	C20—C21—C22—Cl1	-176.59 (17)
C5—C6—C7—C8	0.3 (4)	C18—C17—C22—C21	-2.8 (3)

C6—C7—C8—C9	1.4 (4)	C3-C17-C22-C21	175.45 (19)
C7—C8—C9—C10	-0.9 (4)	C18—C17—C22—Cl1	175.82 (15)
C8—C9—C10—C5	-1.1 (4)	C3-C17-C22-Cl1	-5.9 (3)
C8—C9—C10—C11	176.4 (2)	C18—C17—C22—Cl1	175.82 (15)
C6—C5—C10—C9	2.7 (3)	C3—C17—C22—Cl1	-5.9 (3)
C4—C5—C10—C9	-175.6 (2)	C25—O4—C24—O3	-3.3 (3)
C6-C5-C10-C11	-175.3 (2)	C25—O4—C24—C2	176.29 (18)
C4—C5—C10—C11	6.4 (2)	C3—C2—C24—O3	170.8 (2)
C9—C10—C11—C16	-176.7 (2)	C1—C2—C24—O3	-71.1 (3)
C5-C10-C11-C16	1.0 (2)	C3—C2—C24—O4	-8.7 (3)
C9—C10—C11—C12	-0.1 (4)	C1—C2—C24—O4	109.3 (2)
C5-C10-C11-C12	177.7 (3)	C24—O4—C25—C26	171.0 (2)
C16—C11—C12—C13	1.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$	
C2—H2A···O3 ⁱ	0.98	2.37	3.331 (3)	167	
C6—H6···O3 ⁱ	0.93	2.55	3.393 (3)	151	
C3—H3…Cl1	0.98	2.57	3.082 (2)	113	
C26—H26C···Cg1 ⁱⁱ	0.96	2.95	3.556 (1)	122	
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z$; (ii) $-x+1/2$, $y+1/2$, $-z-1/2$.					

